Optimal binary representation via non-convex optimization on tomographic displays
نویسندگان
چکیده
منابع مشابه
On convex optimization without convex representation
We consider the convex optimization problem P : minx{f(x) : x ∈ K} where f is convex continuously differentiable, and K ⊂ R is a compact convex set with representation {x ∈ R : gj(x) ≥ 0, j = 1, . . . ,m} for some continuously differentiable functions (gj). We discuss the case where the gj ’s are not all concave (in contrast with convex programming where they all are). In particular, even if th...
متن کاملNon-Convex Optimization via Real Algebraic Geometry
The high level purpose of this paper is to describe some recent advances in the field of Mathematics called Real Algebraic Geometry, and discuss some of its applications to complexity theory, and non-convex optimization. In particular, one of the questions underlying the entire development, is the crucial question: What makes an optimization problem difficult or easy? Along the way, we try to p...
متن کاملConvex Optimization For Non-Convex Problems via Column Generation
We apply column generation to approximating complex structured objects via a set of primitive structured objects under either the cross entropy or L2 loss. We use L1 regularization to encourage the use of few structured primitive objects. We attack approximation using convex optimization over an infinite number of variables each corresponding to a primitive structured object that are generated ...
متن کاملTowards Optimal Sparse Inverse Covariance Selection through Non-Convex Optimization
We study the problem of reconstructing the graph of a sparse Gaussian Graphical Model from independent observations, which is equivalent to finding non-zero elements of an inverse covariance matrix. For a model of size p and maximum degree d, the information theoretic lower bound requires that the number of samples needed for recovering the graph perfectly is at least d log p/κ, where κ is the ...
متن کاملOn Sequential Hypotheses Testing via Convex Optimization
We propose a new approach to sequential testing which is an adaptive (on-line) extension of the (off-line) framework developed in [1]. It relies upon testing of pairs of hypotheses in the case where each hypothesis states that the vector of parameters underlying the distribution of observations belongs to a convex set. The nearly optimal under appropriate conditions test is yielded by a solutio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2019
ISSN: 1094-4087
DOI: 10.1364/oe.27.024362